Respuesta :

Answer:

The correct answer option is: [tex]S_9=\frac{9}{2} (2+26)[/tex]

Step-by-step explanation:

We know that,

the sum of the first [tex]n[/tex] terms of an Arithmetic Sequence is given by:

[tex]S_9=\frac{n(a_1+a_n)}{2}[/tex]

where [tex]n[/tex] is the number of terms,

[tex]a_1[/tex] is the first term of the sequence; and

[tex]a_n[/tex] is the first term of the sequence.

So for [tex]a_n=3n-1[/tex],

[tex]a_1=3(1)-1=2[/tex]

and

[tex]a_9=3(9)-1=26[/tex]

Putting these values in the formula to get:

[tex]S_9=\frac{9(a_1+a_9)}{2}[/tex]

[tex]S_9=\frac{9(2+26)}{2} \\\\S_9=\frac{9}{2} (2+26)[/tex]

First five terms:

[tex]a_1=3(1)-1=2[/tex]

[tex]S_1=\frac{1(2+2)}{2}[/tex]=2


[tex]a_2=3(2)-1=5[/tex]

[tex]S_2=\frac{2(2+5)}{2}[/tex]=7


[tex]a_3=3(3)-1=8[/tex]

[tex]S_2=\frac{3(2+8)}{2}[/tex]=15


[tex]a_4=3(4)-1=11[/tex]

[tex]S_4=\frac{4(2+11)}{2}[/tex]=26


[tex]a_5=3(5)-1=14[/tex]

[tex]S_5=\frac{5(2+14)}{2}[/tex]=40



Answer: the corrrect one is A s9=9/2(2+26)