Respuesta :

gmany

The formula of a sum of an arithmetic sequence:

[tex]S_n=\dfrac{a_1+a_n}{2}\cdot n[/tex]

We have n = 75 and [tex]a_n=67-2n[/tex].

Calculate the first and seventy-fifth term:

[tex]a_1=67-2(1)=67-2=65\\\\a_{75}=67-2(75)=67-150=-83[/tex]

Substitute:

[tex]S_{75}=\dfrac{65+(-83)}{2}\cdot75=\dfrac{-18}{2}\cdot75=-9\cdot75=-675[/tex]

Answer: -675

The value of [tex]\rm S_{75}[/tex] is -675 and this can be determined by using the formula of the sum of n terms in the arithmetic sequence and the given data.

Given :

[tex]\rm a_n= 67-2n[/tex]   --- (1)

The following steps can be used in order to determine the value of [tex]\rm S_{75}[/tex]:

Step 1 - Substitute the value of (n = 1) in the expression (1).

[tex]\rm a_1= 67-2(1)= 65[/tex]

Step 2 - Substitute the value of (n = 75) in the expression (1).

[tex]\rm a_{75}= 67-2(75)= -83[/tex]

Step 3 - Now, the formula of sum in an arithmetic sequence is given below:

[tex]\rm S_n=\dfrac{a_1+a_n}{2}\times n[/tex]

where n is the total number of terms, [tex]\rm a_1[/tex] is the first term, and [tex]\rm a_n[/tex] is the last term.

Step 4 - Substitute the values of the known terms in the above expression.

[tex]\rm S_{75}=\dfrac{65-83}{2}\times 75[/tex]

Step 5 - Simply the above expression.

[tex]\rm S_{75} = -675[/tex]

For more information, refer to the link given below:

https://brainly.com/question/10168678

Otras preguntas