find the measure of angle B, note that angle B is acute

Answer:
B= 44.9506°
Step-by-step explanation:
WE apply sine angle formula
[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]
Given angle C = 51, c= 11 and b = 10
[tex]\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]
Plug in the values
[tex]\frac{10}{sin(B)}=\frac{11}{sin(51)}[/tex]
Cross multiply it
10 * sin(51) = 11* sin(B)
7.771459615 = 11 sin(B)
Now divide by 11 on both sides
0.706496328 = sin(B)
Now [tex]B = sin^{-1} (0.706496328)[/tex]
B= 44.9506°