Answer:
[tex]y=-\frac{3}{4}x+1[/tex]
Step-by-step explanation:
We do not have enough information for slope intercept form. But we can use the point-slope formula to find the information. The formula is [tex]y -y_{1} =m(x -x_{1})[/tex] where we substitute a point (x,y) for [tex](x_{1},y_{1})[/tex].
We have m=-3/4 and (-8, 7). We input m and [tex]x_{1} =-8\\y_{1}=7[/tex].
[tex]y-7=-\frac{3}{4} (x-(-8))\\y-7=-\frac{3}{4} (x+8)[/tex]
We now simplify the parenthesis and solve for y.
[tex]y-7=-\frac{3}{4} (x+8)\\y-7=-\frac{3}{4}x+-\frac{3}{4} (8)[/tex]
We convert 8 into a fraction with 1 as the denoinator.
[tex]y-7=-\frac{3}{4}x+-\frac{3}{4} (\frac{8}{1} )\\y-7=-\frac{3}{4}x+-\frac{24}{4}\\y-7=-\frac{3}{4}x+-6[/tex]
We add 7 to both sides to isolate y,
[tex]y-7+7=-\frac{3}{4}x+-6+7\\y=-\frac{3}{4}x+1[/tex]
This is slope intercept form. The line as slope -3/4 and y-intercept (0,1) or b=1.