Calculus Help Please!!!

Hello from MrBillDoesMath!
Answer:
y' = -1/(1+sinx)
the fourth choice.
Discussion:
Using the derivative quotient rule
y' = ( (1 + sinx) (-sinx) - cosx ( cosx) ) \ ( 1 + sinx)^2
as (cosx)' = -sinx and (sinx)' = cos
Expanding we get
y' = ( -sinx - (sinx)^2 - (cosx)^2 ) \ (1 + sinx)^2
But (sinx)^2 + (cos)^2 = 1 so this equals
y' = ( -sinx -1 )\ ( 1 + sinx)^2 =>
y' = - ( 1 + sinx) / (1 + sinx)^2
Notice the numerator is the square of the denominator so
y' = -1/(1+sinx)
which is the fourth choice
Thank you,
MrB
Answer:
[tex]\displaystyle y' = \frac{-1}{1 + \sin x}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \frac{\cos x}{1 + \sin x}[/tex]
Step 2: Differentiate
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation