Respuesta :

znk

Answer:

[tex]x_{1} = -1 - \sqrt{\frac{2}{3}}  ; x_{2} = -1 +\sqrt{\frac{2}{3}}[/tex]

Step-by-step explanation:

-6x -1 + 5x² = 8x²     Move all terms to the right-hand side

0 = 8x² - 5x² + 6x +1     Combine like terms

3x² + 6x + 1 = 0

Apply the quadratic formula

[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

a = 3; b = 6; y = 1

[tex]x = \frac{-6\pm\sqrt{6^2 - 4\times 3 \times1}}{2\times 3}[/tex]

[tex]x = \frac{-6\pm\sqrt{36-12}}{6}[/tex]

[tex]x = \frac{-6\pm\sqrt{24}}{6}[/tex]

[tex]x = \frac{-6\pm \sqrt{4\times6}}{6}[/tex]

[tex]x = \frac{-6\pm 2\sqrt{2}}{6}[/tex]

[tex]x = -1 \pm \sqrt{\frac{2}{3}}[/tex]

[tex]x_{1} = -1 +\sqrt{\frac{{2}}{3}}; x_{2} = 1 -\sqrt{\frac{{2}}{3}}[/tex]

The graph below shows the roots at x₁ =-1.816 and x₂ = -0.184.

Ver imagen znk