ezinta
contestada

What are the vertical and horizontal asymptotes for the function fx=x^2+x-6/x^3-1?
A. vertical asymptote: x = 1 horizontal asymptote: none
B. vertical asymptote: x = 1 horizontal asymptote: y = 0
C. vertical asymptote: x = –2, x = 3 horizontal asymptote: y = 0
D. vertical asymptote: x = –2, x = –3 horizontal asymptote: none

Respuesta :

Answer:

Option B - Vertical asymptote: x = 1, horizontal asymptote: y = 0

Step-by-step explanation:

Given : Function [tex]\frac{x^2+x-6}{x^3-1}[/tex]

To find : What are the vertical and horizontal asymptotes for the function ?

Solution :

Function [tex]\frac{x^2+x-6}{x^3-1}[/tex]

For vertical asymptote,

We equate the denominator to zero,

[tex]x^3-1=0[/tex]

[tex]\Rightarrow x^3=1[/tex]

[tex]\Rightarrow x=1[/tex]

So, x=1 is the vertical asymptote.

For horizontal asymptote,

We compare the degree of numerator and denominator.

Degree of numerator is 2 and degree of denominator is 3.

When degree of denominator is greater than degree of numerator then y=0 is the horizontal asymptote.

So, y=0 is the horizontal asymptote.

Therefore, Option B is correct.

Answer:

Option b is correct.

Step-by-step explanation: