Respuesta :
check the picture below.
so, we know the radius of this circle is 5 then, namely, the distance from (0,0) to (5,0) is 5.
now, if (√(21) , 2) indeed lies on that circle curve, then the distance from (0,0) to (√(21) , 2) will also be the same radius of 5 units.
[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{\textit{origin}}{(\stackrel{x_1}{0}~,~\stackrel{y_1}{0})}\qquad (\stackrel{x_2}{\sqrt{21}}~,~\stackrel{y_2}{2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ r=\sqrt{(\sqrt{21}-0)^2+(2-0)^2}\implies r=\sqrt{(\sqrt{21})^2+2^2} \\\\\\ r=\sqrt{21+4}\implies r=\sqrt{25}\implies r=5~~~~\checkmark[/tex]

Answer:
It does. "Proof" below.
Step-by-step explanation:
In order for the given points to lie on the circle, they must both be the same distance from the origin. The Pythagorean theorem is used to make a "distance formula" for computing the distance between two points.
For a point (x, y), its distance (d) to the origin will be ...
... d = √(x² +y²)
For the reference point that we know is on the circle, this distance (the circle's radius) is ...
... d = √(5² +0²) = √25 = 5
For the point in question, the distance to the origin is ...
... d = √((√21)² +2²) = √(21 +4) = √25 = 5
Both points have the same distance to the origin, 5 units, so a circle (of radius 5) centered there will contain both points.
_____
A graph is not proof, but it can confirm the result.
