!!!!PLEASE HELP!!!
Functions f(x) and g(x) are defined below.
[tex]f(x)=-\sqrt{x+2} -3\\g(x)=-2|x-3|+4[/tex]
Determine where f(x) = g(x) by graphing.

A. x ~-6.2 ; x = -4
B. x = -4 ; x = -1
C. x = -1 ; x ~8.1
D. x ~-6.2 ; x ~8.1

PLEASE HELP Functions fx and gx are defined below texfxsqrtx2 3gx2x34tex Determine where fx gx by graphing A x 62 x 4 B x 4 x 1 C x 1 x 81 D x 62 x 81 class=

Respuesta :

Answer:

C. x = -1 ; x ~8.1

Step-by-step explanation:

First we graph [tex]f(x)= -\sqrt{x+2} -3[/tex]

Here we have x+2 under the square root. x+2>=0, x>=-2

So we take some x  values greater than -2  and find out f(x)  to make a table for graphing

x        f(x)

-2       [tex]-\sqrt{-2+2} -3=-3[/tex]

-1        -4

2        -5

Graph it  and extent the graph

Now we graph [tex]g(x)= -2|x-3| + 4[/tex]

Given equation is in the form of g(x) = a|x-h| + k

where (h,k) is the vertex

here h= 3  and k = 4, so vertex is (3,4)

Now make a table, pick some numbers for x  less than and greater than vertex

x     y

-1     [tex]-2|-1-3| + 4=-4[/tex]

0    [tex]-2|0-3| + 4=-2[/tex]

3    4

6     -2

Both graphs are attached below

The graph of f(x)  and g(x) interests  at x= -1  and x=8.1

Ver imagen lisboa