Write point-slope form of the equation that represents the line that passes through the points (−6, 4) and (4, 2). *Hint: you must find the slope first* Show your work for full credit

Respuesta :

ANSWER

[tex]y - 4 = - \frac{1}{2} (x + 6)[/tex]


EXPLANATION

The given points are
[tex](-6,4) \: and \: (4,2)[/tex]

First, determine the slope using the formula,

[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]
Let
[tex](x_1,y_1)=(-6,4).[/tex]
and

[tex](x_2,y_2)=(4,2)[/tex]


Then, the slope becomes,

[tex]m = \frac{2 - 4}{4 - - 6} [/tex]


[tex]m = \frac{2 - 4}{4 + 6} [/tex]


[tex]m = \frac{ - 2}{10} = - \frac{1}{5} [/tex]


The equation in point slope-form is given by the formula,

[tex]y-y_1=m(x-x_1)[/tex]

We substitute the values to get,

[tex]y - 4 = - \frac{1}{2} (x - - 6)[/tex]

Therefore the point-slope form is
[tex]y - 4 = - \frac{1}{2} (x + 6)[/tex]