Respuesta :

Hello from MrBillDoesMath

Answer:

See below

Discussion:

Be definition secx = (1/cos)\ and tanx = sinx/cos. Substitute these in the the original equation

(secx - cosx)/tanx =  (  (1/cosx ) -cosx) )/ (sinx/cosx) )  =

Multiply top and bottom by cosx:

cosx (  (1/cosx) - cosx) /  ( ( sinx /cosx) * cosx ) =

(1 -  (cosx)^2) / sinx


From (sinx)^2 + (cosx)^2 -1,   1 - (cosx) ^2 = (sinx)^2. Substitute this in the above equation to get

(sinx)^2 / (sinx) = sinx  



Thank you,

Mr. B