A cylinder has a height of 10 cm and a radius of 4 cm. A cone has a height of 5 cm and a radius of 4 cm. How does the volume of the cylinder compare to the volume of the cone?

Respuesta :

gmany

The formula of a volume of a cylinder:

[tex]V_{cylinder}=\pi r^2H[/tex]

r - radius

H - height

We have a radius r = 4cm and a height H = 10cm. Substitute:

[tex]V_{cylinder}=\pi(4^2)(10)=\pi(16)(10)=160\pi\ cm^3[/tex]

The formula of a volume of a cone:

[tex]V_{cone}=\dfrac{1}{3}\pi r^2H[/tex]

We have a radius r = 4cm and a height H = 5cm. Substitute:

[tex]V_{cone}=\dfrac{1}{3}\pi(4^2)(5)=\dfrac{1}{3}\pi(16)(5)=\dfrac{80\pi}{3}\ cm^3[/tex]

[tex]\dfrac{V_{cylinder}}{V_{cone}}=\dfrac{160\pi}{\frac{80\pi}{3}}=\dfrac{160\pi}{1}\cdot\dfrac{3}{80\pi}=\dfrac{2}{1}\cdot\dfrac{3}{1}=6[/tex]

The volume of the cylinder is 6 times larger than the volume of a cone.