In parallelogram ABCD , diagonals AC¯¯¯¯¯ and BD¯¯¯¯¯ intersect at point E, AE=x2−16 , and CE=6x . What is AC ?

The answer is 96.

Respuesta :

Answer:

The answer is 96 when X= 8

Step-by-step explanation:

We have given that :

AE= [tex]x^2-16[/tex]  and CE=[tex]6x[/tex]

where AE and CE are the diagonals of the paralleogram

The diagonals of parallelogram bisect each other therefore,

 [tex]x^2-16 = 6x[/tex]

⇒ [tex]x^2-6x-16=0[/tex]

factors are (x+2)(x-8)=0

setting to each factor 0 the value of x= -2 or x= 8

therefore, two values of AC is

X= -2  ,AC= 2([tex]x^2-16[/tex])=2(-12)=-24

X= 8 ,AC= 2([tex]x^2-16[/tex])=2(48)=96

The answer is 96 when X= 8