editsa
contestada

Given that cosθ=x/6

Which expression represents θ in terms of x?

arcsin(x/6)

sin(x/6)

arccos(x/6)

cos(x/6)

Respuesta :

Answer:

Option  C is correct.

[tex]\theta = arc\cos(\frac{x}{6})[/tex]

Step-by-step explanation:

Given the expression: [tex]\cos \theta = \frac{x}{6}[/tex]

We have to find the expression which represents [tex]\theta[/tex] in terms of x.

Taking both sides in [1] arc cos we have;

[tex]\cos^{-1}(\cos \theta) = cos^{-1} (\frac{x}{6} )[/tex]

[tex](\cos^{-1}\cos) \theta = cos^{-1} (\frac{x}{6} )[/tex]

Simplify:

[tex]\theta = arc\cos(\frac{x}{6})[/tex]

Therefore, the expression represents [tex]\theta[/tex] in terms of x is, [tex]\theta = arc\cos(\frac{x}{6})[/tex]

lemion

Answer:

[tex]arcos(\frac{x}{6})[/tex]

Step-by-step explanation:

Ver imagen lemion