Respuesta :
Answer:
Option C is correct.
[tex]\theta = arc\cos(\frac{x}{6})[/tex]
Step-by-step explanation:
Given the expression: [tex]\cos \theta = \frac{x}{6}[/tex]
We have to find the expression which represents [tex]\theta[/tex] in terms of x.
Taking both sides in [1] arc cos we have;
[tex]\cos^{-1}(\cos \theta) = cos^{-1} (\frac{x}{6} )[/tex]
[tex](\cos^{-1}\cos) \theta = cos^{-1} (\frac{x}{6} )[/tex]
Simplify:
[tex]\theta = arc\cos(\frac{x}{6})[/tex]
Therefore, the expression represents [tex]\theta[/tex] in terms of x is, [tex]\theta = arc\cos(\frac{x}{6})[/tex]