Respuesta :

Answer

Given the statement: In parallelogram ABCD, diagonals AC and BD intersects at point E.

Given that ABCD is a parallelogram.  

As, we know that in a parallelogram diagonals bisect each other.

Since AC and BD intersect at E, and we get E is the mid point of both diagonals AC and BD.

BE = DE                  .....[1]

Substitute the given values of [tex]BE = 2x^2 -3x[/tex] and [tex]DE = x^2+10[/tex] in [1] we have;

[tex]2x^2-3x = x^2+10[/tex]

Subtract [tex]x^2[/tex] on both sides we get;

[tex]2x^2-3x-x^2 = x^2+10-x^2[/tex]

Simplify:

[tex]x^2-3x =10[/tex]

Subtract 10 on both sides we get;

[tex]x^2-3x-10 =0[/tex]

or

[tex]x^2-5x+2x-10 =0[/tex]

[tex]x(x-5)+2(x-5)=0[/tex]

[tex](x-5)(x+2)=0[/tex]

equate these factors equal to zero we get;

(x-5) = 0  and (x+2) = 0

we have;

x = 5 and x = -2

Since, x cannot be negative.

So, x =5

[tex]BE = DE = x^2+10 = (5)^2+10 = 25+10 = 35 units[/tex]

Diagonals BD = BE + DE = 35 + 35 =70 units.

Therefore, the value of BD = 70 units.