Line segment AB has endpoints A(1,4) and B(6,2). Find the coordinates of the point that divides the line segment directed from A to B in the ratio of 2:3

Respuesta :

Answer:

[tex](3,3\frac{1}{5})[/tex]

Step-by-step explanation:

We use the formula;

[tex](\frac{mx_2+nx_1}{2},\frac{my_2+ny_1}{2})[/tex]

where m:n=2:3 and [tex]x_1=1,x_2=6,y_1=4,y_2=2[/tex]

We substitute these values to get;

[tex](\frac{2(6)+3(1)}{2+3},\frac{2(2)+3(4)}{2+3})[/tex]

We simplify to get:

[tex](\frac{15}{5},\frac{16}{5})[/tex]

[tex](3,3\frac{1}{5})[/tex]

Answer:

(3,16/5)

Step-by-step explanation:

(2)(6)+(3)(1)/(2+3),(2)(2)+(3)(4)/(2+3)=3,16/5