Write the first five terms of the sequence defined by the explicit formula.

Answer:
(a) 112, 28, 7, (7/4), (7/16)
Step-by-step explanation:
The sequence is given by the explicit formula
[tex]a_{n} = 112 (\frac{1}{4} )^{n-1}[/tex]
The terms of the sequence are :
[tex]a_{1} = 112 (\frac{1}{4} )^{1-1} = 112 (\frac{1}{4} )^{0} =112 [/tex]
[tex]a_{2} = 112 (\frac{1}{4} )^{2-1} = 112(\frac{1}{4} ) =28 [/tex]
[tex]a_{3} = 112 (\frac{1}{4} )^{3-1} = 112(\frac{1}{4} )^{2} = 7 [/tex]
[tex]a_{4} = 112 (\frac{1}{4} )^{4-1}=112(\frac{1}{4} )^{3} = \frac{7}{4}[/tex]
[tex]a_{5} = 112 (\frac{1}{4} )^{5-1}=112 (\frac{1}{4} )^{4} = \frac{7}{16}[/tex]