Write an expression for the eighth partial sum of the series using summation notation

Answer:
option B
Step-by-step explanation:
9/10 + 6/5 + 3/2...........
We find the difference between the terms
[tex]\frac{6}{5} - \frac{9}{10}[/tex]
[tex]\frac{12}{10} - \frac{9}{10} = \frac{3}{10}[/tex]
We will get the same difference when we subtract consecutive terms.
so , d= 3/10, a= 9/10
we find the formula for nth term
a_n = a+(n-1) d
[tex]a_n = \frac{9}{10} + (n-1)\frac{3}{10}[/tex]
[tex]a_n = \frac{9}{10} +\frac{3}{10}n-\frac{3}{10}[/tex]
[tex]a_n = \frac{6}{10} +\frac{3}{10}n[/tex]
[tex]a_n = \frac{3}{5} +\frac{3}{10}n[/tex]
we need to find eighth partial sum so we take n=1 to 8
sum of 8 terms ([tex]\frac{3}{5} +\frac{3}{10}n[/tex])
So option B is correct