Respuesta :

Answer:

option B

Step-by-step explanation:

9/10 + 6/5 + 3/2...........

We find the difference between the terms

[tex]\frac{6}{5} - \frac{9}{10}[/tex]

[tex]\frac{12}{10} - \frac{9}{10} = \frac{3}{10}[/tex]

We will get the same difference when we subtract consecutive terms.

so , d= 3/10, a= 9/10

we find the formula for nth term

a_n = a+(n-1) d

[tex]a_n = \frac{9}{10} + (n-1)\frac{3}{10}[/tex]

[tex]a_n = \frac{9}{10} +\frac{3}{10}n-\frac{3}{10}[/tex]

[tex]a_n = \frac{6}{10} +\frac{3}{10}n[/tex]

[tex]a_n = \frac{3}{5} +\frac{3}{10}n[/tex]

we need to find eighth partial sum so we  take n=1 to 8

sum of 8 terms ([tex]\frac{3}{5} +\frac{3}{10}n[/tex])

So option B is correct