Respuesta :
Answer:
0.0274
Step-by-step explanation:
The mean is [tex]\mu =114.8[/tex] and the standard deviation is [tex]\sigma =13.1.[/tex]
Calculate
[tex]Z=\dfrac{X-\mu}{\sigma}[/tex]
for [tex]X=140:[/tex]
[tex]Z=\dfrac{140-114.8}{13.1}\approx 1.9237.[/tex]
If [tex]X\sim N(114.8,\ 13.1),[/tex] then [tex]Z\sim N(0,1)[/tex]
and
[tex]Pr(X>140)=Pr(Z>1.9237).[/tex]
Use table for normal distribution probabilities to get that
[tex]Pr(Z>1.9237)=1-Pr(Z\le 1.9237)=1-0.9726=0.0274.[/tex]
Answer:
0.0224
Step-by-step explanation:
Given that systolic blood pressures of women are normally distributed.
IF X is the systolic bp of women X is N(114.8, 13.1)
Required probability
= the probability this woman has a systolic blood pressure greater than 140
=[tex]P(X>140)[/tex]
=[tex]P(Z>\frac{140-114.8}{13.1} =P(Z>1.923)\\[/tex]
=0.5-0.4726
=0.0274