The (p+1)-th term of the Newton binomial expansion
[tex](a+b)^{n}[/tex]
is given by
[tex]t_{p+1}=\dbinom{n}{p}\,a^{n-p}\,b^{p}[/tex]
__________________________
We want the 7th term. Hence, we set [tex]p+1[/tex] to be [tex]7:[/tex]
[tex]p+1=7~~\Rightarrow~~p=6[/tex]
Then, the 7th term is
[tex]t_{7}=\dbinom{8}{6}\,x^{8-6}\,4^{6}\\\\\\ t_{7}=\dfrac{8!}{6!\cdot (8-6)!}\cdot x^{8-6}\cdot 4^{6}\\\\\\ t_{7}=\dfrac{8\cdot 7\cdot \diagup\!\!\!\! 6!}{\diagup\!\!\!\! 6!\cdot 2!}\cdot x^{2}\cdot 4^{6}\\\\\\ t_{7}=\dfrac{8\cdot 7}{2\cdot 1}\cdot x^{2}\cdot 4^{6}\\\\\\ t_{7}=28\cdot x^{2}\cdot 4,096\\\\ \boxed{\begin{array}{c} t_{7}=114,688\,x^{2} \end{array}}[/tex]
Correct answer: [tex]\text{A. }114,688\,x^{2}.[/tex]