Factor each trinomial. Then match the polynomial (term) on the left with its factored form (definition) on the right.

Match Term Definition

x2 – 8x – 20 A) (x – 5)(x + 4)

x2 + 8x – 20 B) (x – 10)(x + 2)

x2 – x – 20 C) Prime

x2 – 9x – 20 D) (x – 2)(x + 10)

Respuesta :

Answer:

Step-by-step explanation:

The given equation is:

[tex]x^{2}-8x-20[/tex]

Simplifying the above equation, we get

[tex]x^{2}-10x+2x-20[/tex]

[tex]x(x-10)+2(x-10)[/tex]

[tex](x+2)(x-10)[/tex]

therefore, the equation [tex]x^{2}-8x-20[/tex] matches with (B) [tex](x+2)(x-10)[/tex].

The given equation is :

[tex]x^{2}+8x-20[/tex]

Simplifying the above equation, we get

[tex]x^{2}+10x-2x-20[/tex]

[tex]x(x+10)-2(x+10)[/tex]

[tex](x-2)(x+10)[/tex]

therefore, the equation [tex]x^{2}+8x-20[/tex] matches with (D) [tex](x-2)(x+10)[/tex]

The given equation is:

[tex]x^{2}-x-20[/tex]

Simplifying the above equation, we get

[tex]x^{2}-5x+4x-20[/tex]

[tex]x(x-5)+4(x-5)[/tex]

[tex](x+4)(x-5)[/tex]

therefore, the equation [tex]x^{2}-x-20[/tex] matches with (A) [tex](x+4)(x-5)[/tex].

The given equation is:

[tex]x^{2}-9x-20[/tex]

This equation ca't be firther simplified or factorised, thus the equation[tex]x^{2}-9x-20[/tex] matches with (C) Prime.

Answer:

x2 − 8x − 20 === (x - 10)(x + 2)

x2 + 8x − 20 === (x - 2)(x + 10)

x2 − x − 20   === (x - 5)(x + 4)

x2 − 9x − 20 === Prime

Hope this hell pit for the knew ones

Better then this guys which is confusing

2/23/21 at 11:43 pm