Please help!

Find the ratio of the area of triangle XBY to the area of triangle ABC for the given measurements, if

XY = 2, AC = 3

a. 1/3
b. 2/3
c. 4/9

Please help Find the ratio of the area of triangle XBY to the area of triangle ABC for the given measurements if XY 2 AC 3 a 13 b 23 c 49 class=

Respuesta :

Answer:

(c)              

Step-by-step explanation:

Consider ΔXBY and ΔABC

∠XYB = ∠ACB    [ Corresponding angles of parallel line (AC and XY) are equal]

∠XBY = ∠ABC (Common angles)

By AA similarity, ΔXBY [tex] \sim[/tex] ΔABC,

We know that the ratio of area of two similar triangles is the square of ratios of their sides.

Ratio of sides =  [tex]\frac{XY}{AC}[/tex]

                       =  [tex]\frac{2}{3}[/tex]

[tex]\frac{Area of \triangle XBY}{Area of \triangle ABC}[/tex] = [tex][\frac{XY}{AC}]^{2}[/tex]

                         =  [tex][\frac{3}{2}]^{2}[/tex]

                        = [tex]\frac{4}{9}[/tex]

Option (c) is correct

Answer:

the answe is c

Step-by-step explanation:

just did the lesson