Respuesta :

Answer:

Final answer is choice B) 3m.

Step-by-step explanation:

[tex]\frac{3m}{m-6}\cdot\frac{5m^3-30m^2}{5m^2}[/tex]

Factor  terms whichever possible.

[tex]=\frac{3m}{m-6}\cdot\frac{5m^2\left(m-6\right)}{5m^2}[/tex]

[tex]=\frac{3m\cdot5m^2\left(m-6\right)}{5m^2\left(m-6\right)}[/tex]

Cancel out same factors which are present in numerator and denominator.

[tex]=3m[/tex]

Hence final answer is choice B) 3m.

Answer:

The correct answer option is B) 3m.

Step-by-step explanation:

We are given the following algebraic expression and we are to simplify it:

[tex] \frac { 3m }{ 3 - 6 }[/tex] · [tex] \frac { 5m^3 - 30m^2} {5m^2} [/tex]

To solve this, we will begin with taking the common terms out to get:

[tex] \frac { 3m }{ 3 - 6 }[/tex] · [tex] \frac { 5m^2(m-6)} {5m^2} [/tex]

Next, we will cancel the like terms where [tex] 5m^2 [/tex] and  [tex] 5m-6 [/tex] cancel each other and we are left with  [tex]3m[/tex]

Therefore, from the given answer options the correct option is B) 3m.