Respuesta :
Answer:
option-D
Step-by-step explanation:
we are given
[tex]x^2+2x+4[/tex]
Let's assume it is equal to 0
[tex]x^2+2x+4=0[/tex]
We can use quadratic formula
Suppose, we are given quadratic equations as
[tex]ax^2+bx+c=0[/tex]
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
we can compare and find a,b and c
a=1 , b=2 , c=4
now, we can plug values
and we get
[tex]x=\frac{-2\pm \sqrt{2^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}[/tex]
now, we can simplify it
and we get
[tex]x=-1+\sqrt{3}i,\:x=-1-\sqrt{3}i[/tex]
Answer:
The correct option is D) −1 + i times the square root of 3.
Step-by-step explanation:
We are given the following expression and we are to find the solutions for this quadratic expression:
[tex] x^2 + 2x + 4 [/tex]
Since we cannot factorize this so we will use the quadratic formula [tex]x = \frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex] to solve it:
[tex] x [/tex] [tex] = [/tex] [tex] \frac{-(2) + -\sqrt{(2)^2-4(1)(4)} }{2 (1) } [/tex]
[tex] x [/tex] [tex] = [/tex] [tex] -1 + \sqrt {3i} , -1 - \sqrt {3i} [/tex]
Therefore, from the given answer options the correct option is D) −1 + i times the square root of 3.