Answer:
B) x^2y + 7
Step-by-step explanation:
we are given
[tex]2x^2y^4-10x^2y+14y^3-70[/tex]
We can use grouping method to factor it
[tex](2x^2y^4-10x^2y)+(14y^3-70)[/tex]
[tex](2x^2y\times y^3-5\times 2x^2y)+(14y^3-14\times 5)[/tex]
now, we can factor common terms
[tex]2x^2y(y^3-5)+14(y^3-5)[/tex]
[tex](y^3-5)(2x^2y+14)[/tex]
so, we get
[tex]2x^2y^4-10x^2y+14y^3-70=(y^3-5)(2x^2y+14)[/tex]
[tex]2x^2y^4-10x^2y+14y^3-70=(y^3-5)2(x^2y+7)[/tex]
[tex]2x^2y^4-10x^2y+14y^3-70=2(y^3-5)(x^2y+7)[/tex]
we can see that x^2y+7 is one of factor