Respuesta :

Answer:

B) x^2y + 7

Step-by-step explanation:

we are given

[tex]2x^2y^4-10x^2y+14y^3-70[/tex]

We can use grouping method to factor it

[tex](2x^2y^4-10x^2y)+(14y^3-70)[/tex]

[tex](2x^2y\times y^3-5\times 2x^2y)+(14y^3-14\times 5)[/tex]

now, we can factor common terms

[tex]2x^2y(y^3-5)+14(y^3-5)[/tex]

[tex](y^3-5)(2x^2y+14)[/tex]

so, we get

[tex]2x^2y^4-10x^2y+14y^3-70=(y^3-5)(2x^2y+14)[/tex]

[tex]2x^2y^4-10x^2y+14y^3-70=(y^3-5)2(x^2y+7)[/tex]

[tex]2x^2y^4-10x^2y+14y^3-70=2(y^3-5)(x^2y+7)[/tex]

we can see that x^2y+7 is one of factor