Solve the following simultaneous equations: x/4 + y = 1 and (x-3)/2 = 2y

Answer:
(x, y ) = ( [tex]\frac{7}{2}[/tex], [tex]\frac{1}{8}[/tex])
Step-by-step explanation:
given the 2 equations
[tex]\frac{x}{4}[/tex] + y = 1 → (1)
[tex]\frac{x-3}{2}[/tex] = 2y → (2)
multiply (1) by 4 and (2) by 2 to eliminate the fractions
x + 4y = 4 → (1)
x - 3 = 4y → (2)
rearrange (2 ) expressing x in terms of y
x = 4y + 3 → (3)
substitute x = 4y + 3 into (1)
4y + 3 + 4y = 4
8y + 3 = 4 ( subtract 3 from both sides )
8y = 1 ( divide both sides by 8 )
y = [tex]\frac{1}{8}[/tex]
substitute this value into (3 ) for x
x = (4 × [tex]\frac{1}{8}[/tex]) + 3 = [tex]\frac{7}{2}[/tex]
solution is ([tex]\frac{7}{2}[/tex], [tex]\frac{1}{8}[/tex])