Respuesta :

Answer:

Vales of a =3 and b = 6

Step-by-step explanation:

Given that: [tex](ar^b)^4 = 81r^{24}[/tex]            .....[1] where a and b are positive integers

we can write 81 and 24 as;

[tex]81 = 3 \cdot 3 \cdot 3 \cdot 3 = 3^4[/tex]

[tex]24 = 4 \cdot 6[/tex]

We have [1] as;

[tex](ar^b)^4 = 3^4r^{4 \cdot 6}[/tex]

Using power rules;

[tex]a^nb^n = (ab)^n[/tex]

[tex]a^n = b^n[/tex] which implies a = b

then;

[tex](ar^b)^4 = (3r^6)^4[/tex]

[tex]ar^b = 3r^6[/tex]

On comparing both sides we have;

a = 3 and

[tex]r^b = r^6[/tex]

⇒[tex]b = 6[/tex]

Therefore, the value of a and b are, 3 and 6