Respuesta :

Answer:

[tex]\frac{1}{4}[/tex]sin2x + [tex]\frac{1}{2}[/tex] x + c

Step-by-step explanation:

using the trigonometric identity

• cos² x = [tex]\frac{1}{2}[/tex](cos2x + 1) and

∫cos ax = [tex]\frac{1}{a}[/tex]sin ax

hence

∫(1 - [tex]\frac{1}{2}[/tex](cos2x + 1)dx

= ∫(1 - [tex]\frac{1}{2}[/tex]cos2x - [tex]\frac{1}{2}[/tex])dx

= ∫([tex]\frac{1}{2}[/tex] - [tex]\frac{1}{2}[/tex]cos2x)dx

= [tex]\frac{1}{2}[/tex]x - [tex]\frac{1}{4}[/tex]sin2x + c

where c is the constant of integration