Respuesta :

Answer:

[tex]40\pi \ m^{2}[/tex]

Step-by-step explanation:

we know that

The area of a circle is equal to

[tex]A=\pi r^{2}[/tex]

In this problem we have

[tex]r=10\ m[/tex]

Substitute and find the area

[tex]A=\pi (10)^{2}=100 \pi\ m^{2}[/tex]

Remember that

[tex]360\°[/tex] subtends the area of complete circle

so

by proportion

Find the area of the shaded regions

The central angle of the shaded regions is equal to [tex]2*72\°=144\°[/tex]

[tex]\frac{100\pi }{360} \frac{m^{2}}{degrees} =\frac{x }{144} \frac{m^{2}}{degrees} \\ \\x=144*100\pi /360\\ \\ x=40\pi \ m^{2}[/tex]