Respuesta :

Answer:

{-2, 4}

Step-by-step explanation:

|x - 1| = 3

There are two cases, one positive and one negative

x - 1 = 3  and  x-1 = -3

Add 1 to each side

x-1+1 = 3+1    x-1+1 = -3+1

x =4                 x = -2

Answer:  The correct option is

(A) {-2, 7}.

Step-by-step explanation:  We are given to find the solution set of the following :

[tex]|x-1|=3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We will be using the following property of modulus :

[tex]|y|=b~~\Rightarrow y=b~or~y=-b.[/tex]

So, from (i), we get

[tex]|x-1|=3\\\\\Rightarrow x-1=3~~or~~x-1=-3\\\\\Rightarrow x=3+1~~~~\Rightarrow x=-3+1\\\\\Rightarrow x=4,-2.[/tex]

Thus, the required solution set is {-2, 4}.

Option (A) is CORRECT.