The expression 1+2n(n+2) describes a pattern of numbers, where n represents a numbers position in the sequence. Write the first four terms of the sequence

Respuesta :

Answer:

The first four terms of the sequence are:

7,17,31 and 49

Step-by-step explanation:

The expression for the number is shown as:

i.e. [tex]a_{n}= 1+2n(n+2)[/tex]

Hence, the first four terms of the sequence are:

First term:

[tex]a_{1}=1+2\times 1\times(1+2)[/tex]

[tex]a_{1}=1+2\times3[/tex]

[tex]a_{1}=7[/tex]

Second Term:

[tex]a_{2}=1+2\times2\times(2+2)\\\\a_{2}=1+16\\\\a_{2}=17[/tex]

Third Term:

[tex]a_{3}=1+2\times3\times(3+2)\\\\a_{3}=1+30\\\\a_{3}=31[/tex]

Fourth Term:

[tex]a_{4}=1+2\times4\times(4+2)\\\\a_{4}=1+48\\\\a_{4}=49[/tex]

Hence , the first four terms of the sequence are :

[tex]a_{1}=7[/tex]

[tex]a_{2}=17[/tex]

[tex]a_{3}=31[/tex]

[tex]a_{4}=49[/tex]