A jam manufacturer knows that in a box of 48 jars,5 will contain less jam than shown on the label. Determine the probability that 2 jars drawn at random will contain less jam.

Respuesta :

Answer:

Probability that 2 jars drawn at random will contain less jam is 0.00886524822

Step-by-step explanation:

A jam manufacturer knows that in a box of 48 jars,5 will contain less jam than shown on the label. Now we have to find the probability  that 2 jars drawn at random will contain less jam.

Given 5 jars contain less jam as shown on label. So 2 jars drawn at random from these 5 jars therefore number of ways or favourable outcome will be  [tex]_{2}^{5}\textrm{C}[/tex]

Total no. of outcomes=[tex]_{2}^{48}\textrm{C}[/tex]

P(2 jars with less jam)=[tex]\frac{Favourable outcome}{Total outcomes}[/tex]

                                   = [tex]\frac{_{2}^{5}\textrm{C}}{_{2}^{48}\textrm{C}}[/tex]

                                   = [tex]\frac{\frac{5!}{2!3!}}{\frac{48!}{2!46!}}=\frac{5}{12(47)}=0.00886524822[/tex]

Hence, probability that 2 jars drawn at random will contain less jam is 0.00886524822