HELP ME!! im so stumped. will give brainliest!

Find the x-intercepts of the parabola with vertex (1, -9) and y intercept at (0, -6).

A.
(-1, 0), (3, 0)

B.
(-0.73, 0), (2.73, 0)
C.
(-1.48, 0), (2.48, 0)

D.
(-4.67, 0), (1.67, 0)

Respuesta :

Answer:

[tex]x=1+\sqrt{3}[/tex] and [tex]x=1-\sqrt{3}[/tex]

Step-by-step explanation:

We have been given the parabola with vertex (1, -9) and y intercept at (0, -6).

Now we need to find the x-intercepts of that parabola. So first we begin by finding the equation of parabola using vertex formula:

[tex]y=a\left(x-h\right)^2+k[/tex]

Vertex for this formula is given by (h,k)

Compare that with given vertex (1,-9), we get: h=1, k=-9

So plug these into vertex formula:

[tex]y=a\left(x-1\right)^2-9[/tex]...(i)

Plug given point (0, -6). into (i)

[tex]-6=a\left(0-1\right)^2-9[/tex]

[tex]-6=a\left(-1\right)^2-9[/tex]

[tex]-6=a\left(1\right)-9[/tex]

[tex]-6+9=a[/tex]

[tex]3=a[/tex]

Plug a=3 into (i)

[tex]y=3\left(x-1\right)^2-9[/tex]

Now to find x-intercept, we just plug y=0 and solve for x

[tex]y=3\left(x-1\right)^2-9[/tex]

[tex]0=3\left(x-1\right)^2-9[/tex]

[tex]9=3\left(x-1\right)^2[/tex]

[tex]3=\left(x-1\right)^2[/tex]

[tex]\pm \sqrt{3}=x-1[/tex]

[tex]1+\pm \sqrt{3}=x[/tex]

Hence final answer are

[tex]x=1+\sqrt{3}[/tex] and [tex]x=1-\sqrt{3}[/tex]