heartss
contestada

Roxy is multiplying 1/8 by 4/3 . Use the drop-down menu to complete the statement.
THIS IS THE ANSWER CHOICE...

the product 1/8 times 4/3 is (greater than/less than) 1/8

Respuesta :

Answer:

The product of [tex]\frac{1}{8} \times \frac{4}{3}[/tex] is greater than [tex]\frac{1}{8}[/tex].

Step-by-step explanation:

Given Roxy is multiplying numbers [tex]\frac{1}{8}[/tex]  by  [tex]\frac{4}{3}[/tex]

[tex]\Rightarrow \frac{1}{8} \times \frac{4}{3}=\frac{1}{6}[/tex]

we have to find out which fraction is greater [tex]\frac{1}{6}[/tex]  or  [tex]\frac{1}{8}[/tex]

Comparing the two fractions,

Step 1) Find the least common denominator or LCM of the two denominators:  

LCM of 6 and 8 is 24

Step 2) For the 1st fraction, since 6 × 4 = 24,

[tex]\frac{1}{6}=\frac{1 \times 4}{6 \times 4}=\frac{4}{24}[/tex]

Step 3)  for the 2nd fraction, since 8 × 3 = 24,

[tex]\frac{1}{8}=\frac{1 \times 3}{8 \times 3}=\frac{3}{24}[/tex]

Step 4) Since the denominators are now the same, the fraction with the bigger numerator is the greater fraction.

Thus, [tex]\frac{4}{24}>\frac{3}{24}[/tex]

[tex]\Rightarrow \frac{1}{6}>\frac{1}{8}[/tex]

Thus, the product of [tex]\frac{1}{8} \times \frac{4}{3}>\frac{1}{8}[/tex].




Answer:

The product 1/8 times 4/3 is greater than 1/8.

Step-by-step explanation:

We need to check whether the product of 1/8 and 4/3 is greater than or less than 1/8.

First find the product of 1/8 and 4/3.

[tex]Product=\frac{1}{8}\times \frac{4}{3}[/tex]

[tex]Product=\frac{1\times 4}{8\times 3}[/tex]

[tex]Product=\frac{4}{24}[/tex]

[tex]Product=\frac{1}{6}[/tex]

We have to check 1/6 is more than or less that 1/8.

Make denominator common we get

[tex]\frac{1}{6}=\frac{1\times 8}{6\times 8}=\frac{8}{48}[/tex]

[tex]\frac{1}{8}=\frac{1\times 6}{8\times 6}=\frac{6}{48}[/tex]

So, we conclude that

[tex]\frac{1}{6}>\frac{1}{8}[/tex]

It means

[tex]\frac{1}{8}\times \frac{4}{3}>\frac{1}{8}[/tex]

Therefore, the product 1/8 times 4/3 is greater than 1/8.