Respuesta :
Answer:
The product of [tex]\frac{1}{8} \times \frac{4}{3}[/tex] is greater than [tex]\frac{1}{8}[/tex].
Step-by-step explanation:
Given Roxy is multiplying numbers [tex]\frac{1}{8}[/tex] by [tex]\frac{4}{3}[/tex]
[tex]\Rightarrow \frac{1}{8} \times \frac{4}{3}=\frac{1}{6}[/tex]
we have to find out which fraction is greater [tex]\frac{1}{6}[/tex] or [tex]\frac{1}{8}[/tex]
Comparing the two fractions,
Step 1) Find the least common denominator or LCM of the two denominators:
LCM of 6 and 8 is 24
Step 2) For the 1st fraction, since 6 × 4 = 24,
[tex]\frac{1}{6}=\frac{1 \times 4}{6 \times 4}=\frac{4}{24}[/tex]
Step 3) for the 2nd fraction, since 8 × 3 = 24,
[tex]\frac{1}{8}=\frac{1 \times 3}{8 \times 3}=\frac{3}{24}[/tex]
Step 4) Since the denominators are now the same, the fraction with the bigger numerator is the greater fraction.
Thus, [tex]\frac{4}{24}>\frac{3}{24}[/tex]
[tex]\Rightarrow \frac{1}{6}>\frac{1}{8}[/tex]
Thus, the product of [tex]\frac{1}{8} \times \frac{4}{3}>\frac{1}{8}[/tex].
Answer:
The product 1/8 times 4/3 is greater than 1/8.
Step-by-step explanation:
We need to check whether the product of 1/8 and 4/3 is greater than or less than 1/8.
First find the product of 1/8 and 4/3.
[tex]Product=\frac{1}{8}\times \frac{4}{3}[/tex]
[tex]Product=\frac{1\times 4}{8\times 3}[/tex]
[tex]Product=\frac{4}{24}[/tex]
[tex]Product=\frac{1}{6}[/tex]
We have to check 1/6 is more than or less that 1/8.
Make denominator common we get
[tex]\frac{1}{6}=\frac{1\times 8}{6\times 8}=\frac{8}{48}[/tex]
[tex]\frac{1}{8}=\frac{1\times 6}{8\times 6}=\frac{6}{48}[/tex]
So, we conclude that
[tex]\frac{1}{6}>\frac{1}{8}[/tex]
It means
[tex]\frac{1}{8}\times \frac{4}{3}>\frac{1}{8}[/tex]
Therefore, the product 1/8 times 4/3 is greater than 1/8.