[tex]y =\dfrac{x^2+5x+6}{x+3} \qquad \text{Restriction: x}\neq -3[/tex]
[tex]y =\dfrac{(x+3)(x+2)}{x+3} \qquad \text{Restriction: x}\neq -3[/tex]
[tex]y = x + 2 \qquad \text{Restriction: x}\neq -3[/tex]
Restriction: when x = -3, y = (-3) + 2
= -1
So, there is a hole at (-3, -1)
The graph has a y-intercept of 2, a slope of 1, and a hole (-3, -1)
(See attached graph)