Respuesta :

Answer:

E

Step-by-step explanation:

using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex], hence

[tex]\sqrt{-12}[/tex]

= [tex]\sqrt{4(3)(-1)}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{3}[/tex] × [tex]\sqrt{-1}[/tex] [[tex]\sqrt{-1}[/tex] = i]

= 2i[tex]\sqrt{3}[/tex] → E


Answer:

Step-by-step explanation:

Alright, lets get started.

The  given expression is [tex]\sqrt{-12}[/tex]

As we know, [tex]\sqrt{-1}[/tex] can be written as i , so the expression would be :

[tex]\sqrt{12i}[/tex]

Now, [tex]\sqrt{12}[/tex] can be written as [tex]2\sqrt{3}[/tex].

So, our expression will become :

[tex]2\sqrt{3}i[/tex]

Or say

[tex]2i\sqrt{3}[/tex]   ...    Answer option E

Hope it will help :)