which choice is equivalent to the expression below √-12

Answer:
E
Step-by-step explanation:
using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex], hence
[tex]\sqrt{-12}[/tex]
= [tex]\sqrt{4(3)(-1)}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{3}[/tex] × [tex]\sqrt{-1}[/tex] [[tex]\sqrt{-1}[/tex] = i]
= 2i[tex]\sqrt{3}[/tex] → E
Answer:
Step-by-step explanation:
Alright, lets get started.
The given expression is [tex]\sqrt{-12}[/tex]
As we know, [tex]\sqrt{-1}[/tex] can be written as i , so the expression would be :
[tex]\sqrt{12i}[/tex]
Now, [tex]\sqrt{12}[/tex] can be written as [tex]2\sqrt{3}[/tex].
So, our expression will become :
[tex]2\sqrt{3}i[/tex]
Or say
[tex]2i\sqrt{3}[/tex] ... Answer option E
Hope it will help :)