Find the area in the first quadrant bounded by the arc of the circle described by the polar equation r = 2 sin θ + 4 cos θ. The circle is graphed in the accompanying figure.
A. 5π/2 B. 5 π C. 5π/2 + 4 D. 5 π + 8

Respuesta :

The first quadrant restricts us to the domain [tex]0\le\theta\le\dfrac\pi2[/tex]. So the area of the region, call it [tex]R[/tex], is

[tex]\displaystyle\iint_R\mathrm dA=\int_{\theta=0}^{\theta=\pi/2}\int_{r=0}^{r=2\sin\theta+4\cos\theta}r\,\mathrm dr\,\mathrm d\theta=\frac12\int_{\theta=0}^{\theta=\pi/2}(2\sin\theta+4\cos\theta)^2\,\mathrm d\theta[/tex]

Expanding the integrand yields

[tex](2\sin\theta+4\cos\theta)^2=4\sin^2\theta+16\sin\theta\cos\theta+16\cos^2\theta=4+8\sin\theta\cos\theta+12\cos^2\theta[/tex]

Apply the double angle identities:

[tex]\sin2\theta=2\sin\theta\cos\theta\implies16\sin\theta\cos\theta=8\sin2\theta[/tex]

[tex]\cos^2\theta=\dfrac{1+\cos2\theta}2[/tex]

So the integral is

[tex]\displaystyle\int_0^{\pi/2}(5+4\sin2\theta+3\cos2\theta)\,\mathrm d\theta[/tex]

[tex]=5\theta-2\cos2\theta+\dfrac32\sin2\theta\bigg|_0^{\pi/2}[/tex]

[tex]=\left(\dfrac{5\pi}2-2\cos\pi+\dfrac32\sin\pi\right)-\left(0-2\cos0+0\right)=\dfrac{5\pi}2+4[/tex]

so the answer is C.