Respuesta :

Answer:

110 Degrees

Step-by-step explanation:

1 / 3

A circumscribed angle is supplementary to the central angle that intercepts the same arc.

The reason is that ABOCABOCA, B, O, C is a quadrilateral, so its angles add up to 360^\circ360

360, degrees. Each of the tangent angles, \angle B∠Bangle, B and \angle C∠Cangle, C, has a measure of 90^\circ90

90, degrees.

\begin{aligned} \text{m}\angle B+ \text{m}\angle C+ \pink{\text{m}\angle A} + \blue{\text{m}\angle O} &= 360\\ 90 + 90 + \pink{\text{m}\angle A} + \blue{\text{m}\angle O} &= 360\\ \pink{\text{m}\angle A} + \blue{\text{m}\angle O} &= 180\\ \end{aligned}

m∠B+m∠C+m∠A+m∠O

90+90+m∠A+m∠O

m∠A+m∠O

 

=360

=360

=180

Hint #22 / 3

\pink{70^\circ} + \blue{\text{m}\angle O}= 180^\circ70

+m∠O=180

start color #ff00af, 70, degrees, end color #ff00af, plus, start color #6495ed, start text, m, end text, angle, O, end color #6495ed, equals, 180, degrees

Hint #33 / 3

\blue{\text{m}\angle O} = \blue{110^\circ}m∠O=110

Angle A is circumscribed about circle O then the measure of angle ∠O would be 110°.

What is the tangent theorem of a circle?

The tangent theorem of a circle states that a line is said to be tangent if it's perpendicular to the circle drawn to the point of tangency.

OC = OB = radius of the circle

AC = AB = tangents of circle O

m∠C = m∠B = 90°. (Tangent and a radius always form 90°)

m∠A = 70°

Therefore,

m∠O = 360° - (m∠C + m∠B + m∠A)  by sum of angles in a quadrilateral.

m∠O = 360° - (90° + 90° + 70°)

m∠O = 360° - 250°

m∠O = 110°.

The measure of angle O = 110°

Learn more about the tangent theorem here;

https://brainly.com/question/17159721