Respuesta :

Answer:

[tex]\frac{3}{2\pi }[/tex].

Step-by-step explanation:

We can see that the given graph is represented by the function [tex]f(x) = \sin 3x.[/tex].

Now, we know that period of the [tex]f(x) = \sin 3x.[/tex] is [tex]2\pi[/tex].

Also, in a sinusoidal model of the form [tex]y=a\sin (b(x-c))+d[/tex], the period is given by [tex]\frac{2\pi }{|b|}[/tex].

Since, the given graph models the function [tex]f(x) = \sin 3x.[/tex].

Its period is given by [tex]\frac{2\pi }{3}[/tex].

Further, the frequency of a sinusoidal model is given by the reciprocal of its period.

Thus, the frequency of this model is [tex]\frac{3}{2\pi }[/tex].

lemion

Answer:

[tex]\frac{3}{2\pi }[/tex]

Step-by-step explanation:

Ver imagen lemion