if ABC is an isosceles triangle and DBE is an equilateral triangle find each missing measure

Answer:
∠1=∠9=43°, ∠2=∠7= 17°, ∠4=∠5=∠6=60°, ∠3=∠8=120°
Step-by-step explanation:
Given ABC is an isosceles triangle and DBE is an equilateral triangle. we have to find each missing measure.
In triangle ABC,
∠1=∠9 (∵isosceles triangle)
⇒ 4x+3=9x-47
⇒ 9x-4x=3+47 ⇒ 5x=50 ⇒ x=10
Hence, ∠9=∠1=(4x+3)°=4(10)+3=43°
Also, given ΔBDE is an equilateral triangle, and all angle of equilateral triangle are equal.
∴ ∠4+∠5+∠6=180°
⇒ ∠4+∠4+∠4=180° ⇒ 3∠4 = 180° ⇒ ∠4 = 60°
∴ ∠4=∠5=∠6=60°
By exterior angle property, ∠3=∠5+∠6=60°+60°=120°
∠8=∠5+∠4=60°+60°=120°
In ΔABD, ∠1+∠2+∠3=180°
⇒ 43°+120°+∠2=180°⇒ ∠2 = 17°
In ΔABD, ∠9+∠8+∠7=180°
⇒ 43°+120°+∠7=180°⇒ ∠7= 17°
The base angles of an isosceles triangle are equal.
The measure of the angles are:
In ABC, we have:
[tex]\mathbf{\angle 1 = \angle 9}[/tex] --- base angles of an isosceles triangle
This gives
[tex]\mathbf{4x+3=9x-47}[/tex]
Collect like terms
[tex]\mathbf{9x - 4x= 3+47}[/tex]
[tex]\mathbf{5x= 50}[/tex]
Divide both sides by 5
[tex]\mathbf{x= 10}[/tex]
So, we have:
[tex]\mathbf{\angle 1 = 4x + 3}[/tex]
[tex]\mathbf{\angle 1 = 4 \times 10 + 3}[/tex]
[tex]\mathbf{\angle 1 = 43}[/tex]
Also:
[tex]\mathbf{\angle 9 = 43}[/tex]
Angles in an equilateral triangle are equal.
So:
[tex]\mathbf{\angle 4=\angle 5=\angle 6=60}[/tex]
In triangle ABC, we have:
[tex]\mathbf{\angle 1 + \angle 2+\angle 5+\angle 7 + \angle 9 =180}[/tex] -- angles in a triangle
[tex]\mathbf{43 + \angle 2+\angle 5+\angle 7 + 43=180}[/tex]
Collect like terms
[tex]\mathbf{\angle 2+\angle 5+\angle 7 =180 - 43 - 43}[/tex]
[tex]\mathbf{\angle 2+\angle 5+\angle 7 =94}[/tex]
Substitute 60 for <5
[tex]\mathbf{\angle 2+60+\angle 7 =94}[/tex]
[tex]\mathbf{\angle 2+\angle 7 =94 - 60}[/tex]
[tex]\mathbf{\angle 2+\angle 7 =34}[/tex]
By exterior angle property, we have:
[tex]\mathbf{\angle 3=\angle 5+\angle 6}[/tex]
So, we have:
[tex]\mathbf{\angle 3=60+60}[/tex]
[tex]\mathbf{\angle 3=120}[/tex]
Similarly
[tex]\mathbf{\angle 8=\angle 4+\angle 5}[/tex]
[tex]\mathbf{\angle 8=\angle 60+\angle 60}[/tex]
[tex]\mathbf{\angle 8=120}[/tex]
In ΔABD, we have:
[tex]\mathbf{\angle 1+\angle 2+\angle 3=180}[/tex]
Substitute known values
[tex]\mathbf{43+\angle 2+120=180}[/tex]
Collect like terms
[tex]\mathbf{\angle 2=180 - 120 - 43}[/tex]
[tex]\mathbf{\angle 2=17}[/tex]
Recall that:
[tex]\mathbf{\angle 2+\angle 7 =34}[/tex]
So, we have:
[tex]\mathbf{17 + \angle 7 = 34}[/tex]
Subtract 17 from both sides
[tex]\mathbf{\angle 7 = 17}[/tex]
Read more about isosceles and equilateral triangles at:
https://brainly.com/question/6238271