Answer:
(-4,3) is the point that divides the line segment in 1:2
Step-by-step explanation:
Given line segment whose coordinates are (-10,9) and (8,-9) that partitioned the line segment in ratio 1:2 . we have to find out the coordinates of points that divides the line segment in 1:2
By internal section formula, coordinates of point C which divides the line segment in m:n will be
[tex][\frac{(mx_{2}+nx_{1})}{(m+n)},\frac{(mx_{2}+nx_{1})}{(m+n)}][/tex]
Here, [tex]m=1, n=2, x_{1}=-10, x_{2}=8, y_{1}=9, y_{2}=-9[/tex]
∴ Coordinates of point C are [tex][\frac{1(8)+2(-10)}{(1+2)}, \frac{1(-9)+2(9)}{(1+2)}][/tex]
⇒ [tex](\frac{-12}{3}, \frac{9}{3})=(-4,3)[/tex]
Hence, (-4,3) is the point that divides the line segment in 1:2