Yuii
contestada

PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!!

What is the point of maximum growth rate for the logistic function f(x) ?

Round your answer to the nearest hundredth.

PLEASE HELP ASAP CORRECT ANSWERS ONLY PLEASE What is the point of maximum growth rate for the logistic function fx Round your answer to the nearest hundredth class=

Respuesta :

Answer: C. (0.73, 10)

Step-by-step explanation:

Maximum growth occurs at f'(x).  Maximum growth rate occurs when f''(x) = 0

[tex]f(x) = \dfrac{20}{1+9e^{-3x}}[/tex]

[tex]f'(x) = \dfrac{540e^-3x}{(1+9e^{-3x})^2}[/tex]

[tex]f''(x)=\dfrac{1620e^{-6x}(-e^{3x}+9)}{(1+9e^{-3x})^3}[/tex]

[tex]0=\dfrac{1620e^{-6x}(-e^{3x}+9)}{(1+9e^{-3x})^3}[/tex]

[tex]0 = (1620e^{-6x})(-e^{3x}+9)[/tex]

[tex]1620e^{-6x}=0\\ e^{-6x}=0\\ ln\ e^{-6x}=ln\ 0\\ ln\ 0\text{\ is NOT VALID}[/tex]


[tex]-e^{3x}+9=0\\ 9=e^{3x}\\ ln\ 9=ln\ e^{3x}\\ ln\ 9=3x\\ \\ \dfrac{ln\ 9}{3}=x\\ \\ 0.73 = x[/tex]

[tex]f(0.73) = \dfrac{20}{1+9e^{-3(0.73)}}[/tex]

   = 10