L(t) models the length of each day (in minutes) in Manila, Philippines tt days after the spring equinox. Here, t is entered in radians. L(t)=52 sin (2pie/365 t) =728 What is the first day after the spring equinox that the day length is 750 minutes?

Respuesta :

Answer:

Given that:

[tex]L(t) = 52\sin(\frac{2 \pi t}{365})+728[/tex]

where

L(t) represents the length of each day(in minutes) and t represents the number of days.

Substitute the value of L(t) = 750 minutes we get;

[tex]750= 52\sin(\frac{2 \pi t}{365})+728[/tex]

Subtract 728 from both sides we get;

[tex]22= 52\sin(\frac{2 \pi t}{365})[/tex]

Divide both sides by 52 we get;

[tex]0.42307692352= \sin(\frac{2 \pi t}{365})[/tex]

or

[tex]\frac{2 \pi t}{365} = \sin^{-1} (0.42307692352)[/tex]

Simplify:

[tex]\frac{2 \pi t}{365} =0.43683845[/tex]

or

[tex]t = \frac{365 \times 0.43683854}{2 \times \pi} = \frac{365 \times 0.43683854}{2 \times 3.14}[/tex]

Simplify:

[tex]t \approx 25[/tex] days

Therefore, the first day after the spring equinox that the day length is 750 minutes, is 25 days

Answer:

25 is answer from k han acedmy

Step-by-step explanation: