Respuesta :
Answer:
Given that:
[tex]L(t) = 52\sin(\frac{2 \pi t}{365})+728[/tex]
where
L(t) represents the length of each day(in minutes) and t represents the number of days.
Substitute the value of L(t) = 750 minutes we get;
[tex]750= 52\sin(\frac{2 \pi t}{365})+728[/tex]
Subtract 728 from both sides we get;
[tex]22= 52\sin(\frac{2 \pi t}{365})[/tex]
Divide both sides by 52 we get;
[tex]0.42307692352= \sin(\frac{2 \pi t}{365})[/tex]
or
[tex]\frac{2 \pi t}{365} = \sin^{-1} (0.42307692352)[/tex]
Simplify:
[tex]\frac{2 \pi t}{365} =0.43683845[/tex]
or
[tex]t = \frac{365 \times 0.43683854}{2 \times \pi} = \frac{365 \times 0.43683854}{2 \times 3.14}[/tex]
Simplify:
[tex]t \approx 25[/tex] days
Therefore, the first day after the spring equinox that the day length is 750 minutes, is 25 days
Answer:
25 is answer from k han acedmy
Step-by-step explanation: