Answer:
Option A is correct
An equation [tex]15n = 60[/tex] does not have an solution of 1/4 form.
Explanation:
To determine which equation does not have a solution of 1/4 for n.
Option A:
[tex]15n = 60[/tex]
Substitute the value of n = 1/4 we have;
[tex]15 \cdot \frac{1}{4} = 60[/tex]
[tex]\frac{15}{4} = 60[/tex] False
Similarly for,
Option B :
[tex]24n = 6[/tex]
Substitute the value of n = 1/4 we have;
[tex]24\cdot \frac{1}{4} = 6[/tex]
[tex]6 = 6[/tex] True
Option C:
[tex]n-1 = -\frac{3}{4}[/tex]
Substitute the value of n = 1/4 we have;
[tex]\frac{1}{4} -1 = -\frac{3}{4}[/tex]
[tex]-\frac{3}{4} = - \frac{3}{4}[/tex] True
Option D:
[tex]1\frac{1}{3} +n = 1\frac{7}{12}[/tex]
Substitute the value of n = 1/4 we have;
[tex]\frac{4}{3} + \frac{1}{4} = \frac{19}{12}[/tex]
[tex]\frac{16+3}{12} = \frac{19}{12}[/tex]
[tex]\frac{19}{12} = \frac{19}{12}[/tex] True
Therefore, an equation [tex]15n = 60[/tex] does not have an solution of 1/4 form.