Respuesta :

Answer:

[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=-\frac{\sqrt{3}}{2}[/tex]

Step-by-step explanation:

Recall that;

[tex]\sin(A) \cos(B)-\sin(B) \cos(A)=\sin(A-B)[/tex]

This implies that;

[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=\sin(265\degree-25\degree)[/tex]

[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=\sin(240\degree)[/tex]

[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=\sin(180\degree+60\degree)[/tex]

[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=-\sin(60\degree)[/tex]

[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=-\frac{\sqrt{3}}{2}[/tex]