Answer:
[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=-\frac{\sqrt{3}}{2}[/tex]
Step-by-step explanation:
Recall that;
[tex]\sin(A) \cos(B)-\sin(B) \cos(A)=\sin(A-B)[/tex]
This implies that;
[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=\sin(265\degree-25\degree)[/tex]
[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=\sin(240\degree)[/tex]
[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=\sin(180\degree+60\degree)[/tex]
[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=-\sin(60\degree)[/tex]
[tex]\sin(265\degree) \cos(25\degree)-\sin(265\degree) \cos(25\degree)=-\frac{\sqrt{3}}{2}[/tex]