Respuesta :
Answer:
All zeros are
x=-10 , x=-5 , x=5
Step-by-step explanation:
we are given function as
[tex]f(x)=x^3+10x^2-25x-250[/tex]
we are given one of zero is x=-10
we have to use Remainder theorem
we can find all possible factor of 250
[tex]250=-5\times 5\times -10[/tex]
so, we will check zeros at x=-5 and x=5
At x=-5:
we can plug x=-5
[tex]f(-5)=(-5)^3+10(-5)^2-25(-5)-250[/tex]
[tex]f(-5)=-125+250-\left(-125\right)-250[/tex]
[tex]f(-5)=0[/tex]
At x=5:
we can plug x=5
[tex]f(5)=(5)^3+10(5)^2-25(5)-250[/tex]
[tex]f(5)=125+250-\left(125\right)-250[/tex]
[tex]f(5)=0[/tex]
So, other zeros are
x=-5 and x=5
All zeros are
x=-10 , x=-5 , x=5