which choice is equivalent to the quotient shown here when x>0?

square root of 22x^6 divided by square root of 11x^4

a.2x^2
b.x^2 square root 2
c.x square root 2
d.2x

Respuesta :

gmany

[tex]\sqrt{22x^6}:\sqrt{11x^4}=\dfrac{\sqrt{22x^6}}{\sqrt{11x^4}}=\sqrt{\dfrac{22}{11}x^{6-4}}=\sqrt{2x^2}=\sqrt2\cdot\sqrt{x^2}=x\sqrt2\\\\Answer:\ \boxed{c.\ x\sqrt2}\\\\Used:\\\\\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\\\\\dfrac{a^n}{a^m}=a^{n-m}\\\\\sqrt{a^2}=a[/tex]

The equation is equivalent to the quotient [tex]\rm x\sqrt{2}[/tex].

The correct option is c.

Given

Equation; [tex]\rm \sqrt{\dfrac{22x^6}{11x^4}}[/tex]

What properties are used to solve the square root equation?

The following properties are used to solve the equation is;

[tex]\rm \sqrt{\dfrac{a}{b}} =\dfrac{\sqrt{a}}{\sqrt{b}}\\\\[/tex]

[tex]\rm \dfrac{a^m}{a^n}=a^{m-n}\\\\\sqrt{a^2} =a[/tex]

Then,

The equation is equivalent to;

[tex]\rm =\sqrt{\dfrac{22x^6}{11x^4}}\\\\\rm= \sqrt{\dfrac{22 \times x^6}{11\times x^4}}\\\\\rm =\sqrt{\dfrac{2\times x^6}{x^4}}\\\\\rm= \sqrt{2\times x^{6-4}}\\\\=\sqrt{2x^2} \\\\=\sqrt{2}\\\\ =x\sqrt{2}[/tex]

Hence, the equation is equivalent to the quotient [tex]\rm x\sqrt{2}[/tex].

To know more square root properties click the link given below.

https://brainly.com/question/9956052