Answer:
1. B
2. A[tex](y+1)=\frac{8}{9} (x+4)\\y+1=\frac{8}{9} x+\frac{8}{9} *4\\y+1=\frac{8}{9} x+\frac{32}{9}\\9*(y+1=\frac{8}{9} x+\frac{32}{9})\\9y+9=8x+32\\-8x+9y=32-9\\-8x+9y=23[/tex]
Step-by-step explanation:
The point slope form of a line is [tex](y-y_1)=m(x-x_1)[/tex] where [tex]x_1=-4\\y_1=-1[/tex]. We write
[tex](y--1)=m(x--4)\\(y+1)=m(x+4)[/tex]
To find m, count the slope from each marked point on the graph. Notice one is 1/2 so we will count by halves. The slope is 8/9
This means B is the point slope form. To convert to the standard form, it must be written as [tex]ax^2+by^2=c[/tex]. We convert using inverse operations.