A student randomly guesses on 10 true/false questions. use the binomial model to determine the probability that the student gets 5 out of 10 questions right. Show all your steps.

Respuesta :

Answer:

[tex]P(5)=\frac{63}{256}[/tex]

Step-by-step explanation:

we are given

A student randomly guesses on 10 true/false questions

so,

[tex]n=10[/tex]

there only true and false

so, probability getting true question is

[tex]p=\frac{1}{2}[/tex]

so, probability getting false question is

[tex]q=\frac{1}{2}[/tex]

the student gets 5 out of 10 questions right

so,

r=5

we can use binomial probability formula

[tex]P(r)=\frac{n!}{r!(n-r)!} p^rq^{n-r}[/tex]

now, we can plug values

[tex]P(5)=\frac{10!}{5!(10-5)!} (\frac{1}{2})^5(\frac{1}{2})^{10-5}[/tex]

we can simplify it

and we get

[tex]P(5)=\frac{63}{256}[/tex]