Respuesta :

Answer:

[tex]\frac{f}{g} =\frac{3x+1}{5x-1}[/tex]

[tex]x\neq \frac{1}{5}[/tex]

Step-by-step explanation:

we are given

[tex]f(x)=3x+1[/tex]

[tex]g(x)=5x-1[/tex]

we have to find f/g

we can write as

[tex]\frac{f}{g} =\frac{f(x)}{g(x)}[/tex]

now, we can plug values

and we get

[tex]\frac{f(x)}{g(x)} =\frac{3x+1}{5x-1}[/tex]

so,

[tex]\frac{f}{g} =\frac{3x+1}{5x-1}[/tex]

we know that denominator can not be zero

so,

[tex]5x-1\neq 0[/tex]

now, we can solve for x

[tex]5x-1+1\neq 0+1[/tex]

[tex]5x\neq 1[/tex]

Divide both sides by 5

and we get

[tex]x\neq \frac{1}{5}[/tex]

Answer:

f/g = (3x+1)/(5x-1)

x ≠1/5

Step-by-step explanation:

f(x) = 3x + 1; g(x) = 5x - 1

We are asked to divide the expressions.

f/g = 3x+1

        -----------

        5x-1

The denominator cannot equal zero   so

5x-1≠0

Add 1 to each side

5x -1+1 ≠1

5x ≠1

Divide by 5

5x/5 ≠1/5

x ≠1/5