Respuesta :
Answer:
[tex]\frac{f}{g} =\frac{3x+1}{5x-1}[/tex]
[tex]x\neq \frac{1}{5}[/tex]
Step-by-step explanation:
we are given
[tex]f(x)=3x+1[/tex]
[tex]g(x)=5x-1[/tex]
we have to find f/g
we can write as
[tex]\frac{f}{g} =\frac{f(x)}{g(x)}[/tex]
now, we can plug values
and we get
[tex]\frac{f(x)}{g(x)} =\frac{3x+1}{5x-1}[/tex]
so,
[tex]\frac{f}{g} =\frac{3x+1}{5x-1}[/tex]
we know that denominator can not be zero
so,
[tex]5x-1\neq 0[/tex]
now, we can solve for x
[tex]5x-1+1\neq 0+1[/tex]
[tex]5x\neq 1[/tex]
Divide both sides by 5
and we get
[tex]x\neq \frac{1}{5}[/tex]
Answer:
f/g = (3x+1)/(5x-1)
x ≠1/5
Step-by-step explanation:
f(x) = 3x + 1; g(x) = 5x - 1
We are asked to divide the expressions.
f/g = 3x+1
-----------
5x-1
The denominator cannot equal zero so
5x-1≠0
Add 1 to each side
5x -1+1 ≠1
5x ≠1
Divide by 5
5x/5 ≠1/5
x ≠1/5